Thứ Hai, 2 tháng 1, 2017

Ứng dụng giao thức IEC60870-5-104 cho truyền thông hệ thống SCADA

Hiện nay, hầu hết hệ thống SCADA của hệ thống điện ở Việt nam đều sử dụng giao thức truyền thông IEC60870-5-101 cho giải pháp truyền thông từ các điểm nút điều khiển kết nối với hệ thống SCADA. Về cơ bản giao thức IEC60870-5-101 đáp ứng được yêu cầu về tín hiệu giám sát điều khiển đo lường theo thời gian thực cho các đối tượng điều khiển. Tuy nhiên, với đặc điểm kết nối theo giao diện truyền thông nối tiếp (serial), giao thức truyền thông IEC60870-5-101 có nhiều hạn chế trong việc thiết lập các kênh truyền thông vật lý, đồng thời khó khăn trong việc mở rộng điểm kết nối trên hệ thống. Cùng với sự phát triển của các giao thức truyền thông trên nền tảng giao thức truyền thông TCP/Ip, giao thức IEC60870-5-104 được ứng dụng cho các giải pháp truyền thông của hệ thống SCADA có nhiều ưu điểm trong việc triển khai cũng như khả năng ổn định cao trong các phương thức truyền dẫn.
I/ Đánh giá việc thực hiện mô hình kết nối theo giao thức truyền thông theo IEC60870-5-101
Mô hình dưới đây là phương thức truyền thông cơ bản của hệ thống SCADA của các trạm truyền tải được thực hiện trong dự án 4 thành phố. Tín hiệu truyền thông IEC101 từ RTU tại trạm kết nối với hệ thống SCADA của hai đường vật lý:
Hinh 1
Phương thức kết nối truyền thông theo giao thức IEC 60870-5-101
  • Main line: đường truyền thông chính sử dụng kết nối qua hạ tầng cáp quang với các thiết bị ghép kênh (PCM) và truyền dẫn (STM1, STM4).
  • Backup line: sử dụng phương thức truyền thông PSTN qua mạng điện thoại có dây của các nhà cung cấp dịch vụ.
Việc chuyển đổi kênh truyền thông từ “main line” sang “backup line” và chuyển đổi máy chủ xử lý dử liệu theo cơ chế (Hot/Standby) đường thực hiện bằng thiết bị chuyển mạch Fall Back Switch (FBS). Với cơ chế truyền thông như trên, giao thức IEC101 có một số hạn chế như sau:
  • Các kênh truyền thông V24 (hoặc 4W) từ RTU hoặc Gateway từ trạm đến hệ thống SCADA phải qua nhiều thiết bị (modem V24/4W, PCM, STM1,4..) làm tăng nguy cơ sự cố trên đường truyền. Thực tế trong quá trình vận hành, sự cố các thiết bị như Modem, PCM, nguồn DC thường xuyên xảy ra, thời gian xử lý kéo dài vì phân cấp quản lý. Phương thức truyền thông dự phòng bằng dịch vụ PSTN không tin cậy.
  • Việc bắt tay của giao thức IEC101 đối với các thiết bị khác hãng khá phức tạp do định nghĩa lớp vật lý (physical layer) của giao thức qua kết nối RS232 thường không đồng nhất hoàn toàn, dẫn đến tình trạng phát sinh bit lỗi trong các bản tin truyền, tín hiệu truyền thông không ổn định.
  • Hệ thống MicroSCADA quản license IEC101 theo kênh vật lý RS232, do đó với tốc độ 9600 bps nên việc ghép nối nhiều station trên một line IEC101 khá hạn chế để đảm bảo yêu cầu thời gian thực của tín hiệu, đồng thời các tín hiệu đo lường 32 bit (CP56Time2a) có đáp ứng rất chậm do kích thước bản tin lớn. Yêu cầu bắt buộc phải sử dụng các thiết bị đầu cuối khác nhau trên các kênh độc lập (không thể ghép chung các RTU, Gateway của các hãng khác nhau lên 1 line IEC101), làm tăng chi phí mua license line.
II/ Giải pháp ứng dụng mô hình kết nối theo giao thức truyền thông IEC 60870-5-104
Giao thức IEC60870-5-104 thực hiện kết nối vật lý trên nền giao thức TCP/Ip nên việc bắt tay trên lớp vật lý thực hiện đơn giản, dễ dàng tương thích giữa hệ thống SCADA với các thiết bị Gateway và RTU của các hãng khác nhau.
Hinh 2
Phương thức kết nối truyền thông theo giao thức IEC 60870-5-104
 Hình trên là mô hình kết nối theo giao thức IEC60870-5-104 đang được EVN thực hiện. Tín hiệu truyền thông IEC104 kết nối từ RTU đến hệ thống SCADA được thực hiện trên kênh FE của các thiết bị truyền dẫn, hoặc qua thiết bị chuyển đổi giao diện E1/FE (main line). Giao thức IEC104 của RTU có thể hổ trợ trên 2 địa chỉ máy chủ, do đó phương thức truyền thông dự phòng dễ dàng thực hiện trên các lớp mạng khác nhau. Đường truyền thông dự phòng (backup line)  được đề xuất thực hiện qua các kênh Internet (3G/GPRS hoặc ADSL), có chi phí thấp. Một số ưu điểm cơ bản khi sử dụng giao thức truyền thông IEC101 được đánh giá qua quá trình thử nghiệm tại EVN như sau:
  • Giao thức IEC104 hoàn toàn tương thích với giao thức IEC101 về lớp liên kết (link layer) và lớp ứng dụng (aplication layer), do đó việc xây dựng CSDL cho các đối tượng điều khiển trên hệ thống MicroSCADA không thay đổi.
  • IEC104 hổ trợ giao diện kết nối qua Ethernet (kênh FE) nên việc đầu tư các thiết bị truyền thông tương đối rẽ tiền và dể quản lý bảo dưỡng hoặc dễ dàng thuê kênh FE của các nhà cung cấp dịch vụ khác với chi phí có thể chấp nhận.
  • Với tốc độ cơ bản của kênh FE từ 128kb/s đến 2Mb/s do đó tốc độ đáp ứng tín hiệu của giao thức IEC104 tốt hơn giao thức IEC101, hổ trợ các gói tin đo lường 32 bit (CP56Time2a).
  • Tất cả các RTU và Gateway tại trạm đều hổ trợ giao thức truyền thông IEC104. Đối với hệ thống MicroSCADA, với tốc độ đáp ứng tín hiệu tốt và cơ chế quản lý địa chỉ trạm (ADSU Address) theo địa chỉ IP nên việc ghép nhiều station trên một line sẽ đảm bảo tính kinh tế trong việc đầu tư license cho hệ thống.
III. Một số giải pháp kết nối SCADA trên nền tảng giao thức IEC60870-5-104 cho các đối tượng trên lưới điện phân phối.
Trên cơ sở hạ tâng truyền thông Internet (FTTH, ADSL, 3G/GPRS), với phương thức thiết lập mạng riêng ảo (VPN) theo dịch vụ Office WAN của các nhà cung cấp dịch vụ, giải pháp truyền thông sử dụng giao thức IEC104 triển khai các các điểm điều khiển trên lưới được xây dựng theo các mô hình sau:
1/ Mô hình kết nối cho các trạm TG 35/22kV
  • Tại các trạm: RTU được cấu hình giao thức IEC104 với địa chỉ Ip cùng lớp mạng, tương ứng với các địa chỉ Station (Unit number) theo lớp liên kết (link layer). Kết nối cổng 10/100 BaseT của RTU với thiết bị ADSL2+, USB36 Load Balancing Router Modem qua giao thức mạng TCP/UDP tốc độ 10/100Mb/s. RTU làm nhiệm vụ kết nối với các thiết bị chấp hành (các máy cắt, recloser) theo các giao thức phổ biến như DNP3, Modbus hoặc theo các phương thức tín hiệu I/O.
Hinh 3
Phương thức kết nối SCADA cho các trạm TG, RMU sử dụng giao thức IEC104
  • Tại DCC: lắp đặt thiết bị Load Balancing Security BroadBand Router hổ trợ kết nối đa điểm với Internet băng thông rộng với địa chỉ Ip tỉnh. Thiết lập mạng riêng ảo (VPN) theo cơ chế SSH hoặc IPsec trên nền tảng dịch vụ OfficeWAN của các nhà cung cấp dịch vụ Internet. Từ thiết bị Load Balancing VPN Router định tuyến địa chỉ Ip được cấp phát qua VPN để kết nối với mạng LAN SCADA; thiết lập Firewall tại Router theo cơ chế kiểm tra trạng thái gói tin, lọc địa chỉ Ip hoặc lọc địa chỉ MAC của thiết bị.
  • Phương thức kết nối này đang được triển khai cho các trạm trung gian 35/22kV.
2/ Mô hình kết nối cho các Recloser bằng giao thức IEC104
Hinh 4
Phương thức kết nối SCADA cho các Recloser sử dụng giao thức IEC104
  • Tại các Recloser, cấu hình các thông số truyền thông theo giao thức IEC 101 (xác lập địa chỉ trạm của các Recloser), thiết lập giao diện RS232 tương thích với giao diện RS232 của modem IEC104 Gateway GPRS. Kết nối cáp tín hiệu từ cổng RS232 của Recloser đến cổng RS232 của modem. Thiết lập chuyển đổi giao thức IEC101 sang IEC104 qua thiết bị Gateway, tín hiệu truyền thông theo giao thức IEC101 (giao diện RS232) được chuyển đổi sang giao thức IEC 104 theo chuẩn TPC/Ip.
  • Tại DDC: lắp đặt thiết bị M2M Gateway kết nối với Internet qua một Router có cấp phát địa chỉ Ip tỉnh. Thiết lập đường truyền VPN qua dịch vụ Office WAN từ thiết bị IEC104 Gateway tại các Recloser tới M2M Gateway tại phòng điều khiển theo cơ chế SSH VPN, M2M Gateway được kết nối với mạng LAN của hệ thống SCADA, được cấp phát địa chỉ Ip cùng lớp của hệ thống. Địa chỉ Ip của các modem từ các Recloser được cấp phát cùng lớp mạng và được định tuyến lại để cùng lớp với hệ thống mạng LAN của SCADA. Cấu hình line IEC 104 với các station tương ứng địa chỉ Ip đã được thiết lập qua mạng VPN đến các thiết bị IEC104 Gateway tại Recloser.
  • Với cơ chế đồng bộ hoá thời gian từ chuẩn giao thức TCP/Ip, giao thức IEC104 giải quyết được vấn đề đồng bộ thời gian của các đối tượng điều khiển khác nhau trên cùng một lớp mạng, với đặc điểm này sẽ cho phép ghép nhiều đối tượng điều khiển khác nhau (các recloser, RTU) lên cùng một line IEC104 mà không xảy ra hiện tượng mất đồng bộ do chồng lấn kênh thời gian các đối tượng điều khiển như các giao thức truyền thông nối tiếp (IEC101).
Kết luận:
Việc ứng dụng giao thức truyền thông IEC 60870-5-104 cho hệ thống SCADA lưới điện phân phối về cơ bản sẽ khắc phục được các hạn chế mà các phương thức truyền thông theo giao thức IEC 60870-5-101 đang gặp phải. Trên nền tảng giao thức mạng TCP/Ip, giao thức IEC104 cho phép thiết lập truyền thông một cách đơn giản, chi phí thấp, đồng thời dễ dàng khai thác hạ tầng viễn thông của các nhà cung cấp dịch vụ. Bên cạnh đó, cơ chế dự phòng truyền thông và dự phòng hệ thống sẽ dễ dàng được thiết lập qua khả năng chia sẻ dữ liệu trên môi trường mạng. Tuy nhiên, yêu cầu bảo mật trong các giải pháp truyền thông phải được đặc biệt ưu tiên khi khai thác trên hạ tầng truyền thông công cộng.

Nâng cao hiệu quả vận hành bằng các giải pháp tự động hóa trên lưới điện trung thế.

Các sự cố trên lưới điện trung áp là nguyên nhân chủ yếu làm giảm độ tin cậy cung cấp điện cho khách hàng. Do đó, ngoài các biện pháp nâng cao chất lượng công tác quản lý vận hành thì việc áp dụng các giải pháp tự động hóa trên lưới điện trung áp là một yêu cầu rất cần thiết. Bài viết này đề cập đến các vấn đề đầu tư và khai thác hiệu quả các chức năng tự động hóa trên lưới điện trung áp, nhằm mục đích giảm thiểu thời gian và phạm vi mất điện do sự cố, góp phần nâng cao chất lượng cung cấp điện.
Hiện nay, cùng với việc áp dụng các phương thức điều khiển xa thiết bị (remote control), các giải pháp sử dụng thiết bị chỉ thị phân đoạn sự cố (FPIs – Fault Passage Indicators), phối hợp hiệu quả với các thiết bị tự động đóng lặp lại (Automatic Reclosers – AR), đồng thời bố trí hợp lý các thiết bị tự động phân đoạn (Sectionalizer Automation) sẽ là các giải pháp hiệu quả với chi phí đầu tư hợp lý, giúp cho việc phát hiện nhanh sự cố, nhanh chóng khôi phục cấp điện và hạn chế phạm vi mất điện của phụ tải.
Thiết bị chỉ thị phân đoạn sự cố (FPIs):
Sử dụng thiết bị chỉ thị phân đoạn sự cố (FPIs) trên lưới điện trung áp là một giải pháp có chi phí thấp, dễ dàng lắp đặt, hổ trợ nhanh chóng trong việc phân định vị trí sự cố trên các tuyến đường dây dài. Việc xác định vị trí lắp đặt thiết bị FPIs trên lưới điện được tính toán trên cơ sở các thông số ngắn mạch của lưới điện cũng như thuận lợi các thao tác phân đoạn sự cố. Khi phát hiện dòng điện ngắn mạch kết hợp với logic mất điện áp, thiết bị FPIs sẽ phát ra tín hiệu cảnh báo để người vận hành nhanh chóng đánh giá được phạm vi sự cố. Nguyên tắc phân đoạn sự cố dựa trên thiết bị FPIs được mô tả theo hình dưới đây.
ẢnhHình 1: Nguyên tắc phân đoạn sự cố dựa trên thiết bị FPIs
Trong tình huống sự cố mô tả theo sơ đồ trên, máy cắt xuất tuyến tác động, hướng công suất dòng ngắn mạch làm các thiết bị chỉ thị phân đoạn sự cố FPI(1), FPI(2), FPI(5) phát tín hiệu cảnh báo (Alarm), các thiết bị FPI(3), FPI(4) ở trạng thái bình thường (Normal). Tuỳ theo chức năng giám sát của thiết bị FPIs, trạng thái Alarm của thiết bị được reset tự động khi có nguồn điện áp trở lại (sử dụng để phát hiện các sự cố duy trì, máy cắt đóng lại không thành công) hoặc thiết bị được reset bằng tay (sử dụng để phát hiện các sự cố thoáng qua khi máy cắt xuất tuyến đóng lại thành công). Căn cứ vào các thiết bị FPIs phát tín hiệu Alarm, người vận hành sẽ nhanh chóng xác định được vị trí phân đoạn sự cố chính xác.
Tuy theo đặc thù của lưới điện trung áp, các thiết bị FPIs được chế tạo để làm việc trên lưới điện trên không hay lưới điện cáp ngầm, theo chế độ làm việc của trung tính hệ thống. Ngoài ra các thiết bị FPIs có khả năng phát hiện hướng dòng điện qua việc kết hợp cảm biến điện áp với cảm biến dòng điện, các thiết bị này chủ yếu được áp dụng đối với các lưới điện liên kết mạch vòng có khả năng thay đổi hướng công suất.
ẢnhHình 2: Giải pháp giám sát xa các thiết bị FPIs
Với yêu cầu giám sát xa chế độ cảnh báo sự cố trên lưới điện, nâng cao tính chính xác của chức năng định vị sự cố (fault location) trên hệ thống SCADA/DMS, các thiết bị FPIs dễ dàng được kết nối với các RTU hổ trợ chức năng thu phát tín hiệu RF trong phạm 10 – 20 m. Tín hiệu alarm từ các FPIs được RTU gửi về trung tâm bằng các đường truyền qua dịch vụ GSM/GPRS thông dụng. Khi phát hiện sự cố, RTU từ vị trí sự cố gửi một bản tin sự kiện dưới dạng tin nhắn SMS với cú pháp quy định sẵn, hệ thống điều khiển hoặc người vận hành nhận được tin nhắn sẽ nhanh chóng xác định được phạm vi sự cố trên lưới điện.
Thiết bị tự động đóng lặp lại (Automatic Recloser – AR):
Lắp đặt thiết bị tự động đóng lặp lại (AR) trên lưới điện trung áp là giải pháp ưu tiên để giải trừ các tình huống sự cố thoáng qua (với xác xuất trên 70%), đồng thời thuận lợi trong các phương thức kết nối điều khiển xa. Tuy nhiên việc thiết lập tối ưu các chức năng tự động hóa của thiết bị AR sẽ làm tăng hiệu quả trong các phương thức bảo vệ trên lưới điện.
ẢnhHình 3: Thiết bị tự động đóng lặp lại (Automatic Recloser)
Thiết lập các thông số bảo vệ rơle của thiết bị phải được thống nhất chung trong chiến lược bảo vệ rơle của hệ thống điện. Trong đó, phương thức phối hợp bảo vệ của các AR trên đường dây được phối hợp tuần tự (Coordination Sequence) với các thiết bị bảo vệ khác trên lưới điện, cụ thể các phương án phối hợp cần lưu ý như sau:
   – Phối hợp AR với FCO phía nguồn.
   – Phối hợp AR với FCO phía tải.
   – Phối hợp AR với rơle bảo vệ xuất tuyến.
   – Phối hợp AR với các AR khác.
Các AR hiện nay hổ trợ rất nhiều các chức năng bảo vệ. Tùy theo chiến lược bảo vệ rơle trên lưới điện để khai thác các chức năng bảo vệ của AR một cách phù hợp và hiệu quả. Đối với các chức năng bảo vệ cơ bản như như bảo vệ quá dòng pha (F50/51), bảo vệ quá dòng chạm đất (F50N/51N), từ thông số tính toán ngắn mạch của lưới điện, áp dụng thống nhất các đặc tuyến dòng điện – thời gian theo tiêu chuẩn IEC 60255 hoặc ANSI/IEEE C37.112, đảm bảo yêu cầu phối hợp bảo vệ. Một số chức năng bảo vệ nâng cao của AR như bảo vệ dòng thứ tự ngược (Negative Phase Sequence – F46), bảo vệ dòng điện có hướng (Directional Over Current – F67), bảo vệ kém áp (F27) và bảo vệ dòng chạm đất nhạy (Sensetive Earth Fault – SEF)…cần phải đánh giá cụ thể tính chất của lưới điện và khả năng phối hợp với các thiết bị khác để đảm bảo tính chọn lọc trong phương thức bảo vệ. Trên cơ sở các chế độ làm việc của lưới điện, thiết lập các nhóm bảo vệ (Protection Group) phù hợp, một số AR có khả năng đánh giá dòng tải và hướng công suất để tự động thực hiện lựa chọn nhóm bảo vệ phù hợp với chế độ vận hành.
Bên cạnh đó, cần căn cứ vào đặc điểm, tính chất phụ tải để sử dụng các chức năng hổ trợ khác như chức năng bù tải nguội (Cold Load Pickup), chức năng chống dòng khởi động (Inrush Restraint Current). Các chức năng này có khả năng tự động đánh giá phụ tải để điều chỉnh đặc tính bảo vệ rơle của thiết bị trong các trường hợp thiết bị đóng lại. Tuy nhiên việc điều chỉnh đặc tính bảo vệ rơle một cách tự động phải được xem xét một cách kỷ lưỡng trong các phương thức phối hợp bảo vệ của hệ thống.
Chức năng tự động đóng lặp lại hoạt động rất hiệu quả trong các trường hợp sự cố thoáng qua. Tùy theo đặc điểm lưới điện để thiết lập số lần (number of cycle), thời gian chờ (Dead Time) và thời gian phục hồi (Reclaim Time) của chu trình đóng lặp lại phù hợp. Đa số các thiết bị AR đều hổ trợ trên 4 lần đóng lặp lại trong một chu trình, tuy nhiên xác xuất đóng lại thành công tập trung ở hai lần đầu tiên với thời gian đóng lại từ 1 – 30 giây. Thời gian phục hồi của chu trình đóng lặp lại phải đảm bảo đủ lớn (trên 180 giây) để ngăn ngừa tình trạng làm việc liên tục của thiết bị trong trường hợp sự cố chập chờn trên lưới điện. Hạn chế sử dụng chức năng tự động đóng lặp lại trong trường hợp thiết bị AR bảo vệ lưới điện cáp ngầm hoặc bảo vệ máy biến áp lực, vì các sự cố trên các đối tượng bảo vệ này thường là sự cố duy trì. Chức năng đóng lặp lại còn phải được xem xét trong trường hợp phối hợp với các thiết bị khác cũng như phối hợp với các thiết bị tự động phân đoạn sự cố để đạt được kết quả cao nhất trong việc tự động khôi phục lưới điện.
Chức năng tự động khép mạch vòng (Loop Automation- LA): được các thiết bị AR hổ trợ trên các lưới điện có liên kết vòng. Căn cứ vào các cảm biến điện áp, dòng điện và khả năng đánh giá hướng công suất, khi có sự cố tại một điểm trên lưới điện liên kết vòng, các AR sẽ cô lập vùng sự cố và tự động khôi phục cấp điện cho các phụ tải nằm ngoài phạm vi ảnh hưỡng của sự cố. Quá trình trên được thực hiện một cách tự động dựa trên thuật toán logic phối hợp thời gian đơn giãn, các thiết bị hoàn toàn không có kết nối truyền thông.
ẢnhHình 4: Sơ đồ mô tả chức năng tự động khép mạch vòng của các AR
Theo sơ đồ kết lưới trên, các AR được phân theo vị trí lắp đặt: Xuất tuyến (Feeder – F), Phân đoạn (MidPoint AR – Ma), Thường mở (Tia AR–Ta). Trong trường hợp sự cố trong phạm vi giữa hai AR đóng vai trò phân đoạn (Ma) và xuất tuyến (F), hoặc xuất tuyến (F) và máy cắt nguồn (CB), các AR loại Ma sẽ tự động mở ra sau khi phát hiện mất điện áp phía nguồn, AR loại Ta sẽ kiểm tra điều kiện mất điện áp về một phía, sau một khoảng thời gian được thiết lập an toàn, AR Ta sẽ tự động đóng điện khôi phụ nguồn cấp cho phạm vi phụ tải giữa hai AR loại Ma và Ta. Đây là một giải pháp đơn giãn trong việc tự động khôi phục lưới điện, tuy nhiên chức năng tự động khép mạch vòng (LA) chỉ làm việc chính xác với kết cấu lưới ổn định, các thiết bị bảo vệ điều khiển được đầu tư đồng bộ.
Recloser và thiết bị tự động phân đoạn sự cố (Sectionalisers Automation – SA)
ẢnhHình 5: Sơ đồ minh hoạ phương thức phối hợp giữa recloser và các thiết bị SA
Thiết bị tự động phân đoạn sự cố thông thường là một dao cách ly có tải (LBS) với bộ điều khiển có khả năng giám sát điện áp lưới, đếm số lần mất điện trong một khoảng thời gian nhất định để tự động thực hiện cắt LBS. Theo sơ đồ minh hoạ phương thức phối hợp giữa recloser và các thiết bị SA, thiết bị AR đầu xuất tuyến được thiết lập 3 lần đóng lặp lại. Tuỳ theo tính chất ưu tiên của phụ tải và đặc điểm vận hành của lưới điện, các thiết bị SA được cài đặt tác động tương ứng sau lần đóng lặp lại (N) của AR. Trong trường hợp trên, thiết bị S2, S3 sẽ tác động sau lần đóng lặp lại đầu tiên, thiết bị S4 tác động sau lần đóng lặp lại thứ 2, thiết bị S1 tác động sau lần đóng lặp lại thứ 3. Logic phối hợp tuần tự giữa thiết bị AR và các SA sẽ đảm bảo nhanh chóng khôi phục cấp điện cho các phụ tải ưu tiên, đồng thời dễ dàng xác định được phạm vi sự cố trên lưới điện. Ngoài ra các thiết bị SA còn có khả năng kết nối với hệ thống điều khiến trung tâm, hổ trợ các thao tác điều khiển xa để phân đoạn sự cố.
Kết luận:
Yêu cầu nâng cao độ tin cậy cung cấp điện qua việc giảm thời gian và phạm vi mất điện do sự cố đòi hỏi phải áp dụng nhiều biện pháp đồng bộ, từ công tác quản lý vận hành đến vấn đề áp dụng các giải pháp tự động hoá cho lưới điện. Việc khai thác hiệu quả các chức năng tự động hoá của các thiết bị trên lưới điện là giải pháp hiệu quả và kinh tế. Tuy nhiên, trong thực tế khả năng áp dụng các giải pháp trên phụ thuộc nhiều vào sự đồng bộ của kết cấu lưới điện, cũng như năng lực quản lý vận hành thiết bị của người sử dụng. Đây cũng là một định hướng trong chiến lược phát triển lưới điện thông minh (Smart Grid) mà EVN đang xây dựng.
 

Tự động hoá trạm biến áp trên nền tảng giao thức truyền thông IEC 61850


Hiện nay việc ứng dụng công nghệ điều khiển tích hợp trạm biến áp (TBA) truyền tải và phân phối là xu hướng chung của thế giới nhằm giảm chi phí đầu tư, nâng cao độ tin cậy cung cấp điện. Tập đoàn điện lực Việt Nam (EVN) đã ban hành quy định kỹ thuật của hệ thống điều khiển tích hợp TBA, tuy nhiên vấn đề khó khăn nhất là khả năng tương thích về tiêu chuẩn kết nối giữa các thiết bị của các hãng khác nhau. Để nâng cao tính cạnh tranh, thuận lợi cho quá trình mở rộng phát triển hệ thống, tiêu chuẩn truyền thông IEC 61850 được EVN lựa chọn cho các ứng dụng tự động hoá TBA. Bài viết này giời thiệu một cách khái quát khả năng ứng dụng các chức năng tự động và bảo vệ của TBA trên nên tảng giao thức truyền thông IEC 61850.
Tự động hoá TBA (Substation Automation – SA) là hệ thống cho phép các chức năng về điện của trạm được giám sát, điều khiển và phối hợp bởi các thiết bị phân tán lắp đặt trong trạm. Các chức năng được thực hiện bởi hệ thống SA dựa trên cơ sở các bộ xử lý tốc độ cao được biết đến như là RTU (Remote Terminal Units) hoặc các thiết bị điện tử thông minh (Intelligent Electronic Devices – IEDs). Xây dựng chiến lược bảo vệ và tự động của TBA sẽ quyết định đến mô hình thu thập, xử lý và trao đổi dữ liệu của các IEDs. Do đó, vấn đề truyền thông giữa các IEDs và giữa các IEDs với trung tâm điều khiển sẽ rất quan trọng khi thực hiện các chức năng tự động hoá của trạm. Rất nhiều các giao thức truyền thông được sử dụng trong việc giám sát điều khiển xa TBA, các giao thức phổ biến như Modbus, DNP3 và IEC 6870. Các giao thức trên không có sự tương đồng (Interoperability) hoàn toàn khi được cung cấp bởi các hãng khác nhau, đồng thời hạn chế về tốc độ xử lý nên việc xây dựng các ứng dụng tự động hoá trạm trên nền tảng các giao thức truyền thống khá khó khăn. Trên cơ sở kiến trúc truyền thông đa dụng UCA 2.0, từ năm 2003 tổ chức kỹ thuật điện quốc tế IEC (International Electrotechnical Commission) ban hành phiên bản đầu tiên về tiêu chuẩn truyền thông IEC 61850.
IEC61850_H1
Hình 1: Các khả năng của tiêu chuẩn IEC 61850 trong ứng dụng tự động hoá TBA
IEC 61850 là tiêu chuẩn truyền thông quốc tế mới cho các ứng dụng tự động hoá trạm. Tiêu chuẩn cho phép tích hợp tất cả các chức năng bảo vệ, điều khiển, đo lường và giám sát truyền thống của TBA, đồng thời nó có khả năng cung cấp các ứng dụng bảo vệ và điều khiển phân tán, chức năng liên động và giám sát phức tạp. Với ưu điểm của chuẩn truyền thông TCP/IP Enternet, giao thức IEC 61850 có hiệu năng làm việc cao, xử lý thông tin đạt tốc độ 100Mbps và đơn giản trong việc thực hiện kết nối trên mạng LAN. Tiêu chuẩn IEC 61850 bao gồm 14 phần chia thành 10 chủ đề chính.
Để đảm bảo cho tất cả các ứng dụng về tự động hoá trạm hiện tại và tương lai đều có khả năng được hổ trợ bởi tiêu chuẩn, IEC61850 xây dựng mô hình dữ liệu trên cơ sở các mô hình đối tượng và thiết bị trong hệ thống, qua đó hệ thống được mô tả trên cơ sở tập hợp các quy tắc trao đổi giữ liệu giữa các đối tượng trên một cơ chế truyền thông linh hoạt. Trên nền tảng giao thức truyền thông IEC 61850, các hệ thống SA sẽ tăng tính linh hoạt, tăng khả năng tương đồng của các thiết bị, đơn giản hoá việc thiết kế phần cứng, giảm chi phí lắp đặt, hạn chế được lỗi và sự can thiệp bằng tay từ người vận hành.
Đối tượng chính của tiêu chuẩn IEC61850 là thiết kế hệ thống thông tin có khả năng cung cấp sự tương đồng giữa các thiết bị từ các nhà sản xuất khác nhau, để phối hợp thực hiện cùng một chức năng. Trên cơ sở đó, mô hình dữ liệu đối tượng của tiêu chuẩn sẽ chia các chức năng của trạm thành những chức năng con, những chức năng con này được định nghĩa là các node logic (Logical Nodes –LNs), LNs là thành phần cơ bản, các thông tin chủ yếu được trao đổi trên các LNs. Ví dụ chức năng bảo vệ quá dòng (PTOC) sẽ lấy thông tin từ biến dòng (TCTR) và trạng thái máy cắt (XCBR). Việc xác định các LNs trên một thiết bị vật lý phụ thuộc vào khả năng của thiết bị do nhà sản xuất cung cấp. Kèm theo định nghĩa LNs, tiêu chuẩn còn định nghĩa thiết bị logic (Logical Devices – LDs) và thiết bị vật lý (Physical Devices – PDs). Mổi thiết bị logic LDs được tập hợp từ nhiều node logic (LNs) và luôn hoạt động trên một thiết bị vật lý cụ thể. Thiết bị vật lý PDs có thể bao gồm một số thiết bị logic khác nhau, kèm theo đó thiết bị vật lý sẽ được xác định bằng một địa chỉ mạng (IP address) cụ thể.
IEC61850_H2 
Hình 2
: Ví dụ về mô hình dữ liệu của một rơle bảo vệ đường dây: PD, LDs, LNs
Trên Hình 2 ta có thể thấy một rơle bảo vệ đường dây được định nghĩa là một PD, các chức năng chính của rơle có thể thực hiện được như sau: bảo vệ (LD#1 Protection), điều khiển máy cắt (LD#2 Control) và đo lường (LD#3 Meas). Với chức năng bảo vệ  bao gồm bảo vệ quá dòng (LN1: PTOC) và bảo vệ khoảng cách (LN2: PDIS), tương tự các chức năng điều khiển và đo lường của rơle cũng được chia thành nhiều chức năng con (LNs) riêng biệt.
Trong thực tế các ứng dụng tự động hoá trạm phát triển chậm hơn so với khả năng phát triển, nâng cấp của công nghệ truyền thông. Do đó để đảm bảo khả năng hoạt động của các ứng dụng khi hệ thống thông tin được nâng cấp, tiêu chuẩn định nghĩa các giao tiếp dịch vụ truyền thông cơ bản (Abstract Communications Services Interface – ACSI) như đọc ghi dữ liệu (GetDataValue, SetDataValue).., các định nghĩa này được quy định trong IEC61850-7-2. ACSI tách biệt với các ứng dụng SA về mặt truyền thông, nghĩa là dịch vụ ACSI sẽ tham chiếu trên giao diện truyền thông TCP/IP để thực hiện các ứng dụng SA, các tham chiếu này vẫn phù hợp khi giao diện truyền thông TCP/IP được nâng cấp.
Về cơ bản các thiết bị trong TBA được chia thành 2 loại: thiết bị sơ cấp và thiết bị thứ cấp. Các thiết bị sơ cấp bao gồm: máy biến áp, máy cắt, dao cách ly. Các thiết bị thứ cấp bao gồm: thiết bị bảo vệ, điều khiển, đo lường và các thiết bị thông tin. Theo tiêu chuẩn IEC 61850, các thiết bị thứ cấp của TBA được sắp xếp theo 3 mức: mức trạm (Station Level),  mức ngăn lộ (Bay Level) và mức quá trình (Process Level). Sơ đồ sắp xếp theo 3 mức của các thiết bị thứ cấp trạm được thể hiện ở Hình 3. Giao diện người  máy (Human Machine Interface – HMI) và thiết bị truyền thông (Communication Unit – ComU) thuộc về mức trạm. Các thiết bị ở mức trạm được kết nối với các thiết bị ở mức ngăn lộ thông qua bus trạm (Station Bus). Hệ thống điều khiển trạm liên lạc với các thiết bị bảo vệ điều khiển bằng hệ thống Staion Bus, được định nghĩa trong IEC61850-8-1. HMI là nhóm các phần mềmSCADA với giao diện đồ hoạ trực quan cho phép người vận hành có thể thao tác, giám sát các thiết bị ở mức ngăn lộ (Bay Level). Các hệ thống SCADA sử dụng công cụ OPC Serverđể để trao đổi dữ liệu giữa HMI với các thiết bị IEDs. OPC (OLE for Process Control – Đối tượng nhúng cho điều khiển quá trình), là một công cụ cho phép biên dịch dữ liệu của các đối tượng điều khiển (IEDs, RTUs) thông qua các hàm của hệ điều hành. Thiết bị ComU có thể là một thiết bị định tuyến (Router) để kết nối với mạng diện rộng (WAN) của trung tâm điều khiển, hoặc là một thiết Gateway/Converter chuyển đối giao thức thường gặp như IEC61850/IEC6870-5-101.
 IEC61850_H3
Hình 3
: Cấu hình truyền thông cơ bản hệ thống tự động hoá trạm với giao thức IEC61850
Các IEDs ở mức ngăn lộ và các thiết bị đo lường, thiết bị chấp hành ở mức quá trình truyền thông với nhau qua hệ thống bus quá trình (Process Bus). Cơ chế trao đổi thông tin trên bus quá trình được thực hiện dưới dạng bản tin sự kiện hướng đối tượng trạm thống nhất (Generic Object-Oriented Substation Event – GOOSE Measage), được định nghĩa trong IEC 61850-9-1 & 9-2. Trên hệ thống bus quá trình các bản tin GOOSE được trao đổi giữa các rơle hoặc giữa các rơle với thiết bị trộn tín hiệu (Merging Unit). Thiết bị trộn tín hiệu là một IED, nó cho phép chuyển đổi các tín hiệu đo lường và trạng thái của thiết bị giám sát gửi tới các rơle. Hiện nay, các thiết bị đo lường hoặc máy cắt thế hệ mới có khả năng kết nối trực tiếp với hệ thống bus quá trình qua giao thức. Với tốc độ xử lý cao sẽ cho phép các IEDs có thể thực hiện chức năng liên động, ghi nhiễu chéo, bảo vệ chống hư hỏng máy cắt, kiểm tra hướng công suất, so sánh dòng điện vi sai và nhiều ứng dụng phức tạp khác. Cơ chế xử lý thông tin dạng GOOSE giữa các IEDs đã làm thay đổi cơ bản cách thực thiết kế nhị thứ của trạm, giảm tối thiểu dây tín hiệu, nâng cao khả năng thực hiện các ứng dụng bảo vệ và điều khiển phân tán.
Xây dựng cấu hình phần mền cho các ứng dụng tự động hoá trạm được thực hiện bằng ngôn ngữ cấu hình trạm (Substation Configuration Language – SCL). Ngôn ngữ SCL dựa trên cầu trúc ngôn ngữ đánh dấu có thể mở rộng (eXtensible Markup Language – XML), được định nghĩa trong IEC 61850-6. Việc sử dụng ngôn ngữ SCL với mô hình dữ liệu đối tượng của IEC 61850 cho phép sử dụng nhiều công cụ khác nhau của nhiều nhà sản xuất để biên dịch và hiểu các thông tin được chứa đựng trong bất kỳ IEDs. Điều này cho phép trong quá trình trao đổi dữ liệu giữa các IEDs sẽ tránh được tình trạng không hiểu nhau, thuận lợi trong việc tích hợp hệ thống từ nhiều nhà sản xuất. Hiện này có nhiều công cụ để soạn thảo và biên dịch mã lệnh SCL và Visual SCL. File cấu hình SCL sẽ được dùng chung cho các ứng dụng động hoá trạm giống nhau từ các nhà cung cấp khác nhau. SCL files có 04 loại: SCD files (System Configuration Description) mô tả cấu hình hệ thống; SSD files (System Specification Description) mô tả đặc điểm của hệ thống; ICD files (IED Capability Description) mô tả khả năng của các IEDs; CID (Configured IED Description) mô tả cấu hình các IED.  Việc xây dựng mô hình dữ liệu bằng ngôn ngữ SCL là một khâu quan trọng trong quá trình thiết kế tự động hoá trạm trên nên tảng của giao thức IEC 61850.
Kết luận:
Trên cơ sở công nghệ truyền thông hiện đại và cách tiếp cận mới về mô hình đối tượng giám sát điều khiển cũng như cách thức trao đổi dữ liệu của các đối tượng đó, tiêu chuẩn IEC 61850 tạo ra khả năng tích hợp cao cho các hệ thống tự động hoá TBA, vấn đề không tương đồng giữa các thiết bị từ các nhà sản xuất khác nhau dần được giải quyết. Với việc giảm tối đa các dây dẫn tín hiệu, tăng khả năng tương tác giữa các thiết bị, hệ thống sẽ trở nên linh hoạt và tin cậy, đồng thời giảm được giá thành thiết lập cũng như chi phí vận hành, bảo dưỡng. Tuy nhiên để có thể ứng dụng hiệu quả tiêu chuẩn IEC 61850 trong hệ thống điều khiển tích hợp TBA, cách thức thiết kế cần có những thay đổi quan trọng đó là xây dựng cấu hình phần mềm trên cơ sở đặc điểm thiết bị và phương thức đo lường, điều khiển, bảo vệ của trạm.

Không có nhận xét nào: